9.1 A becslőfüggvény tulajdonságai

Az ismeretlen sokaság paraméterére vonatkozó következtetésünk minden esetben mintabeli információn fog alapulni, azaz egy valószínűségi változón, hiszen a mintánk minden mintavétel esetén más és más lenne. Ezt a valószínűségi változót becslőfüggvénynek, az adott minta esetén kiszámított értékét pedig becsült értéknek nevezzük.9 A becslőfüggvény tehát egy mintaelemektől mint valószínűségi változóktól függő matematikai formula, míg a becsült érték ennek a formulának az adott mintára vonatkozó kiszámított értéke, a valószínűségi változó egy realizációja, egy szám.

Első közelítésben tehát becslőfüggvényt kell meghatároznunk, amivel a becslés végrehajtható. Ez ugyan egyszerűnek tűnik, de mégsem létezik egyetlen legjobb módszer a függvény meghatározására. Az ebben a tananyagban tárgyalt egyszerű esetekre a becslőfüggvény többnyire kézenfekvő, azonban összetettebb esetekre ez már nem igaz. Annak érdekében, hogy a különböző becslőfüggvényeket össze tudjuk hasonlítani, érdemes néhány kritériumot felállítani, a két legfontosabb tulajdonság a torzítatlanság és a hatásosság.

9.1.1 Torzítatlanság

A becslőfüggvények egyik kívánatos tulajdonsága a torzítatlanság, ami alatt a következő tulajdonságot értjük (ahogy azt már az előző fejezetben is láttuk):

E(ˆθ)=θ

Ekkor azt mondjuk tehát, hogy a ˆθ becslőfüggvény torzítatlan becslőfüggvénye a θ sokasági paraméternek, a becslőfüggvény minden lehetséges mintán vett várható értéke pontosan a keresett sokasági paraméterrel egyenlő. A torzítatlanság tehát nem azt jelenti, hogy akár csak egyetlen mintabeli érték eltalálja a sokasági értéket, hanem azt, hogy a mintabeli értékek várható értékben a sokasági paramétert adják.

Ahogy azt a (8.1) összefüggésünk mutatta, a mintabeli átlagok átlaga (várható értéke) megegyezik a sokasági átlaggal, azaz a mintaátlag ˆθ=¯X torzítatlan becslőfüggvénye a sokasági átlagnak θ=μ. A mintabeli átlag azonban nem az egyetlen lehetséges -- és nem is minden esetben a legjobb -- becslőfüggvénye a sokasági átlagnak. A mintabeli medián is egy lehetséges, de nem minden esetben jó becslőfüggvény.

Amennyiben a σ2 sokasági variancia becslőfüggvényét keressük, a torzítatlan becslőfüggvényt a mintabeli korrigált variancia adja, de itt is elképzelhető lenne más becslőfüggvény, pl. a mintabeli terjedelem osztva hárommal. Természetesen elméleti megalapozás nélkül ez a becslőfüggvény valószínűleg nem teljesítene túlságosan jól.

Vannak olyan esetek, amikor nem található torzítatlan becslőfüggvény, azaz nem teljesül a (9.1) összefüggés. A torzítás mértékét a

E(ˆθ)θ

különbség méri, ami jellemzően n, a mintaelemszám változásával változik10. Amennyiben n esetén a torzítás a 0-hoz tart, a tulajdonságot aszimptotikus torzítatlanságnak nevezzük.

A 9.1. táblázatban az általunk eddig ismert és leggyakrabban használt paramétereket és becslőfüggvényeket foglaljuk össze. Valamennyi becslőfüggvényről elmondható, hogy azok torzítatlanok, azaz a hozzájuk tartozó torzítás 0.

Táblázat 9.1: Sokasági paraméterek és becslőfüggvényeik
paraméter θ becslőfüggvény ˆθ
sokasági átlag μ mintabeli átlag ¯X
sokasági variancia σ2 mintabeli korrigált variancia S2
sokasági arány π mintabeli arány P

9.1.2 Hatásosság

A gyakorlatban sok esetben több torzítatlan becslőfüggvény is található, közülük segíthet választani a hatásosság. Azt a becslőfüggvényt preferáljuk a torzítatlan becslőfüggvények közül, melyek jobban koncentrálódnak a becsülni kívánt paraméter körül. Ez azt jelenti, hogy a hatásosabb becslőfüggvény esetén a mintabeli értékek átlagosan közelebb vannak a sokasági értékhez, mint a kevésbé hatékony alternatíva esetén.

Legyen ^θ1 és ^θ2 két, θ-ra vonatkozó, ugyanakkora mintából számított becslőfüggvény, akkor ^θ1 hatásosabb mint ^θ2, ha Var(^θ1)<Var(^θ2).

Léteznek ún. abszolút hatásos becslőfüggvények, melyek adott feltételek mellett bizonyíthatóan a legkisebb varianciájú becslést eredményezik.

Legyen X normális eloszlású sokaság, melyből függetlenül vett nagy, n elemű minta átlaga torzítatlan, és azt is tudjuk, hogy Var(¯X)=σ2n

Belátható, hogy a mintabeli medián is torzítatlan becslőfüggvénye a sokasági átlagnak nagy n esetén, valamint Var(^me)=π2σ2n

Mivel a mintaátlag varianciája alacsonyabb a mintabeli medián varianciájánál (Var(¯X)<Var(^me)), ezért a fenti feltételek mellett az átlag hatásosabb becslőfüggvény, mint a medián. Nem szabad azonban elfelejtenünk, hogy lehetnek olyan esetek, például kiugró értékek esetén, amikor a medián hatásosabb becslőfüggvény a sokasági átlagra vonatkozóan. Ennek vizsgálata meghaladja tankönyvünk kereteit.

  1. A továbbiakban is próbáljuk a valószínűségszámítás során bevezetett konvenciót követni. A valószínűségi változót nagybetűvel, míg a mintából származó becsült értéket kisbetűvel fogjuk jelölni. Ahol ez már nehezen tartható, gyakran használt jelölés a ^. Például a θ paraméter becslőfüggvényét ˆθ jelöli, általános esetben, amikor egy tetszőleges paraméterről beszélünk, mi is ezt a jelölést fogjuk használni.↩︎

  2. Amennyiben nem változna, elegendő lenne a torzítást levonni a becslőfüggvényből, hogy torzítatlan becslőfüggvényt kapjunk.↩︎